Correction to "Generalized Orthogonal Matching Pursuit"
نویسندگان
چکیده
As an extension of orthogonal matching pursuit (OMP) improving the recovery performance of sparse signals, generalized OMP (gOMP) has recently been studied in the literature. In this paper, we present a new analysis of the gOMP algorithm using restricted isometry property (RIP). We show that if the measurement matrix Φ ∈ R satisfies the RIP with δmax{9,S+1}K ≤ 1 8 , then gOMP performs stable reconstruction of all K-sparse signals x ∈ R from the noisy measurements y = Φx + v within max {
منابع مشابه
A New Look at Generalized Orthogonal Matching Pursuit: Stable Signal Recovery under Measurement Noise
Generalized orthogonal matching pursuit (gOMP) is an extension of orthogonal matching pursuit (OMP) algorithm designed to improve the recovery performance of sparse signals. In this paper, we provide a new analysis for the gOMP algorithm for both noiseless and noisy scenarios. We show that if the measurement matrix Φ ∈ R satisfies the restricted isometry property (RIP) with δ7K+N−1 ≤ 0.0231, th...
متن کاملImproved Bounds on RIP for Generalized Orthogonal Matching Pursuit
Generalized Orthogonal Matching Pursuit (gOMP) is a natural extension of OMP algorithm where unlike OMP, it may select N(≥ 1) atoms in each iteration. In this paper, we demonstrate that gOMP can successfully reconstruct a K-sparse signal from a compressed measurement y = Φx by K iteration if the sensing matrix Φ satisfies restricted isometry property (RIP) of order NK where δNK < √ N √ K+2 √ N ...
متن کاملImproved Sufficient Conditions for Sparse Recovery with Generalized Orthogonal Matching Pursuit
Generalized orthogonal matching pursuit (gOMP), also called orthogonal multi-matching pursuit, is an extension of OMP in the sense that N ≥ 1 indices are identified per iteration. In this paper, we show that if the restricted isometry constant (RIC) δNK+1 of a sensing matrix A satisfies δNK+1 < 1/ √ K/N + 1, then under a condition on the signal-to-noise ratio, gOMP identifies at least one index...
متن کاملGroup Orthogonal Matching Pursuit for Logistic Regression
We consider a matching pursuit approach for variable selection and estimation in logistic regression models. Specifically, we propose Logistic Group Orthogonal Matching Pursuit (LogitGOMP), which extends the Group-OMP procedure originally proposed for linear regression models, to select groups of variables in logistic regression models, given a predefined grouping structure within the explanato...
متن کاملSparse Signals Reconstruction via Adaptive Iterative Greedy Algorithm
Compressive sensing(CS) is an emerging research field that has applications in signal processing, error correction, medical imaging, seismology, and many more other areas. CS promises to efficiently reconstruct a sparse signal vector via a much smaller number of linear measurements than its dimension. In order to improve CS reconstruction performance, this paper present a novel reconstruction g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 61 شماره
صفحات -
تاریخ انتشار 2013